PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

1	A Meta-Analysis of Physical Activity Interventions in People with Physical Disabilities:
2	Content, Characteristics, and Effects on Behaviour
3	
4	
5	Jasmin K. Ma M.Sc. ^{1, 2}
6	Kathleen A. Martin Ginis Ph.D.* ^{1, 2, 3}
7	University of British Columbia
8	¹ School of Health and Exercise Sciences
9	² International Collaboration on Repair Discoveries (ICORD)
10 11	³ Faculty of Medicine, Department of Physical Medicine and Rehabilitation, University of British Columbia, Canada
12	
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	*Corresponding author: Jasmin Ma Phone 613 329 1849 E-mail Jasmin.Ma@ubc.ca The material described in this paper is not under publication or consideration by another journal or conference. The data reported in this paper have not been previously published. All authors approve submission of this paper for publication.
33 34	Acknowledgement of Funding/Disclosure of Potential Conflicts of Interest
35 36	This project was funded by a Social Sciences and Humanities Research Council grant and the Canadian Disability Participation Project. There are no conflicts of interest to declare.

37

Abstract

38	Objectives: Among samples of people with physical disabilities, the effects of physical
39	activity (PA) interventions and the factors that influence intervention success are unknown. The
40	purpose of this meta-analysis was to i) evaluate the overall effect of interventions on PA
41	behaviour and ii) examine the influence of intervention characteristics, theory, and behaviour
42	change techniques (BCTs) on PA intervention effects in persons with physical disability. Design:
43	Meta-analysis. Method: Medline, Embase, PsychINFO, and AMED databases were searched for
44	randomized controlled trials that evaluated the effects of a PA intervention in people with
45	physical disability. Data were extracted regarding study and intervention characteristics and use
46	of theory. Intervention descriptions were coded using the BCT Taxonomy version 1. Results: A
47	total of 24 articles met the inclusion criteria. Overall, interventions had a small to medium-sized
48	effect on PA behaviour (g=0.35, k=22, 95% CI [0.21, 0.48]). Interventions that used theory
49	(g=0.53, k=12, 95% CI [0.38, 0.68]) had larger effects than interventions that did not, $p<0.001$.
50	Interventions that included self-monitoring of behaviour produced larger effects ($g=0.45 k=12$,
51	95% CI [0.28, 0.63], $p=.04$) and interventions with monitoring of behaviour by others without
52	feedback produced smaller effects ($g=0.05$, $k=3$, 95% CI [-0.22, 0.32], $p=.02$) than studies
53	without these BCTs. Conclusion: Interventions to increase PA behaviour in people with physical
54	disability are effective, especially when theory is used to guide their development. Research is
55	needed to examine a wider range of BCTs and the moderating effects of intervention
56	characteristics on PA behaviour.
57	Keywords
ся 59	Physical disability, Physical activity, Interventions, Theory, Intervention characteristics,

- 60 Behavior change techniques
- 61
- 62

63 A Meta-Analysis of Physical Activity Interventions in People with Physical Disabilities:

Content, Characteristics, and Effects on Behaviour

65

64

Among people with physical disabilities, physical activity (PA) participation rates are 66 67 even lower than the sub-optimal levels reported in the general population. For instance, in a 68 British national survey (Sport England, 2016), just 17% of adults with a disability reported at 69 least one session of exercise or sport per week, compared to 40% of able-bodied adults. Furthermore, a Dutch study found that daily accelerometry counts were up to 60% lower in 70 71 people with various disabilities and chronic conditions than in an able-bodied reference sample 72 (Van Den Berg-Emons, Bussmann, & Stam, 2010). Given the tremendous personal, 73 environmental and systemic PA barriers faced by people with disability (Martin Ginis, Ma, 74 Latimer-Cheung, & Rimmer, 2016), these statistics are not particularly surprising. Nevertheless, 75 the data do speak to the need for targeted PA behaviour change interventions for populations 76 with disability.

77 Several meta-analyses have demonstrated the effectiveness of PA behaviour change 78 interventions in the general population (e.g. Conn. Hafdahl, & Mehr. 2011: Michie, Abraham, 79 Whittington, & McAteer, 2009; Webb, Yardley, & Michie, 2010). For instance, Conn and 80 colleagues (2011) reported an average effect size of d = .19 across 206 studies of healthy adults 81 that compared an intervention to a control condition. Exploratory moderator analyses revealed 82 that interventions were more effective when delivered by research staff than by people trained by 83 researchers (e.g., health care providers), and when delivered face-to-face, rather than through 84 mediated channels (e.g., telephone, internet). There was no association between the magnitude of behaviour change and either the number of intervention strategies used or the amount of time 85 devoted to the intervention. However, intervention content did seem to matter. Interventions that 86

87	used only behavioural strategies (e.g., goal setting, self-monitoring) were more effective than
88	interventions that used educational/informational strategies.
89	Physical activity intervention content has been addressed in several meta-analyses (e.g.,
90	Michie et al., 2009; Olander et al., 2013; Webb et al., 2010), with a particular focus on behaviour
91	change techniques (BCTs). Behaviour change techniques are "observable, replicable, and
92	irreducible" mechanisms of change within a behavioural intervention (Michie, Johnson, &
93	Johnston, 2015; Michie et al., 2011). Development of reliable methods for coding and classifying
94	BCTs has helped advance knowledge regarding the most effective 'ingredients' of PA
95	interventions for various populations (Michie et al., 2011; Michie et al., 2013).
96	For instance, Michie et al. (2009) coded the characteristics and content of PA and healthy
97	eating behaviour change interventions in healthy adults. Across 69 PA studies, the overall effect
98	on behaviour was $d = 0.32$. Interestingly, only intervention content was associated with
99	intervention effectiveness. Specifically, interventions that included the BCT of self-monitoring
100	plus one of four other self-regulation BCTs (intention formation, prompting specific goal setting,
101	providing feedback on performance, and prompting review of behavioural goals) produced
102	significantly larger effects ($d = .38$) than interventions that did not include these BCTs ($d = .27$).
103	Other intervention characteristicssuch as intervention duration, setting, delivery format (e.g.,
104	group versus individual), person delivering the intervention, or number of BCTs usedwere
105	unrelated to intervention effects.
106	The effectiveness of self-regulation BCTs in changing PA behaviour has also been
107	supported in a systematic review of reviews and meta-analyses of studies of adults at risk for
108	developing type II diabetes (Greaves et al., 2011). High quality randomized controlled trial
109	(RCT) evidence showed overall medium-sized changes in self-reported PA (standardized mean

110 difference = 0.30). Similar to Michie et *al.*'s (2009) findings, the use of self-regulation BCTs

(goal setting, prompting self-monitoring, providing feedback on performance, goal review) was associated with larger effects. No associations were found between effect sizes and intervention delivery format, provider, mode, or intensity. Taken together, these reviews suggest that delivery characteristics of an intervention are not nearly as important as whether the intervention employs BCTs targeting an individual's ability to self-regulate.

116 It is not known, however, if these findings generalize to populations with disability. 117 Because people living with physical disability experience unique barriers to PA (e.g., limitations 118 in functional ability, inaccessible facilities, negative attitudes from others; Martin Ginis, et al., 119 2016), they may have unique needs for intervention content and delivery. For instance, given the 120 lack of good quality, basic information on PA for people with disabilities (Shaw, Mallory, 121 Arkell, & Martin Ginis, 2017), provision of information/education may be an important aspect of 122 intervention effectiveness. Furthermore, because of transportation and architectural barriers to 123 accessing intervention settings (e.g., clinics, universities), mediated forms of intervention 124 delivery (e.g., telephone, internet) may be more effective than face-to-face delivery. Although 125 these issues have not vet been addressed in a meta-analysis of the disability literature, a recent 126 meta-synthesis provides support for the unique intervention needs of people with disabilities. 127 Specifically, Williams and colleagues (2017) conducted a meta-synthesis of 10 128 qualitative studies that explored experiences of adults with physical impairments who had 129 participated in PA-enhancing interventions. Thematic analysis revealed five intervention 130 components that participants considered important for intervention success. The components included: giving consideration to how the intervention is communicated and delivered (e.g., by 131 132 whom and through what medium); providing information on PA and the self-management of

impairments and related symptoms; teaching behavioural strategies for initiating and maintaining
PA (e.g., action planning, goal-setting, obtaining feedback); and addressing participants' need for
social support, particularly from health professionals. The authors recommended that these
intervention characteristics and content be taken into consideration when developing PAenhancing interventions for people with disabilities.

138 A recent scoping review catalogued 24 studies that used behaviour change strategies 139 aimed at increasing community-based PA in adults with physical or cognitive disabilities (Lai, 140 Young, Bickel, Motl, & Rimmer, 2017). The authors defined behaviour change strategies as the 141 theoretical frameworks used in the studies, rather than as BCTs. Sixteen studies mentioned a 142 theoretical framework, with two studies 'informed by theory', 10 'applying theory' and four 143 'testing theory'. Bandura's (1997) social cognitive theory was the most often-cited framework 144 (14 studies). All but one study reported a significant increase in PA. These findings suggest that 145 interventions that are theory-based or 'theory-inspired' (Michie et al., 2016) are generally 146 effective for increasing PA in people with disabilities. It is not known, however, which specific 147 content and characteristics of the interventions account for their effectiveness. A meta-analysis 148 was undertaken to address these knowledge gaps.

Specifically, we conducted a meta-analysis of RCTs of PA behaviour change interventions involving persons with physical disability, in order to identify intervention characteristics and BCTs that produce the greatest behaviour change. Based on previous reviews, it was hypothesized that: 1) overall, interventions would result in significant increases in behaviour; 2) the largest effects would be produced by interventions that used theory and by interventions employing BCTs related to self-regulation; 3) intervention effectiveness would be unrelated to delivery setting (group versus individual), intervention intensity, or number of BCTs

7

156 used. No hypotheses were formulated regarding the effects of intervention provider or mode of 157 delivery; while there is a rationale for the importance of these characteristics in populations with 158 disability (Williams et al., 2007), evidence is mixed regarding their importance in the general 159 population (Conn et al., 2011; Michie et al., 2009). 160 Methods 161 Search strategy and study selection criteria 162 PRISMA guidelines were followed in the conduct of this review (Supplementary Figure 1). 163 The first author (XX) and a research assistant conducted independent searches of electronic 164 databases for relevant articles. Reference lists of selected reviews were also searched and experts 165 in the field were consulted to search their personal libraries to identify any other relevant articles. 166 The original search included articles published until April 2015 and was updated in April 2017. 167 AMED (1985-present), Embase (1974-present), ERIC (1966-present), Medline (1946-present), 168 PsychINFO (1987-present), and PubMed (1950-present) databases were searched using the 169 following keywords (for a sample search strategy see Supplementary File 1): (1) Terms for

170 interventions: 'intervention stud*' OR 'program' OR 'curriculum' OR 'physical education' OR

171 'promotion' OR 'initiative' OR 'behaviour change' OR 'strateg*' (2) Terms for physical

172 activity: 'physical activity' OR 'exercise' OR 'physical fitness' OR 'sports' (3) Terms for

173 disability: 'disabled persons' OR 'stroke' OR 'cerebral palsy' OR 'amputee' OR 'spinal cord

174 injur*' OR 'multiple sclerosis' OR 'osteoarthritis' OR 'Parkinson disease'.

Limits were set to include only articles written or translated in English. Terms for disability were based on our experience with similar reviews indicating the need to include these terms to maximize coverage of the literature (e.g. Martin Ginis et al., 2016; Williams et al., 2017). 178 Conditions that do not necessarily result in physical disability (e.g., traumatic brain injury,

179 rheumatic conditions) were not included.

Study inclusion criteria were: (a) original reports of RCTs published in peer-reviewed 180 181 journals; (b) articles that reported quantitative data from interventions designed to increase PA 182 performed in home and/or community settings; (c) participants were youth or adults who had a 183 physical disability, which was defined as mobility, stamina, or dexterity impairments. Exclusion 184 criteria were: (a) studies without a PA intervention, (i.e. studies that did not include an 185 informational, behavioural, social or environmental approach to increasing activity; see Kahn et 186 al., 2002); (b) included rehabilitation exercise only and (c) interventions targeting multiple health behaviours. 187

188 Screening of articles

After removal of duplicate abstracts, relevant titles were screened. Abstracts of relevant titles were then screened for inclusion/exclusion criteria. Twenty-six articles met the criteria; however, two articles were subsequently excluded because they did not provide adequate data to calculate effect sizes. Authors were emailed with a request to provide additional data but they did not respond. The first author and a research assistant worked independently throughout all of the screening steps and had no discrepancies. Figure 1 is a PRISMA diagram of the screening process leading to the final sample of 24 articles.

196 **Data extraction**

Supplementary Table 1 shows the full data extraction table and includes: *Study details*:
author, year, study design, objective, number of participants in intervention and control groups,
dropouts, PA measure used, and theoretical framework. *Participant information:* age, disability
type, gender, PA behaviour pre- and post-intervention. *Intervention details:* intervention

201 description, intensity, duration, provider, provider training, format, setting, type, exercise

202 prescription (frequency, intensity, time, type), delivery method, and materials (cf. Davidson et

al., 2003). Data were extracted by XX and checked by a research assistant.

204 Appraisal of the evidence

205 The Cochrane Risk of Bias Assessment (ROB) for RCTs was used to assess study 206 quality. Evidence for its reliability and validity has been reported (Hartling et al., 2009; Hartling 207 et al., 2011). This tool is based on narrative descriptions of evidence-based methodological 208 features known to increase the risk of bias in RCTs. Six domains of potential bias were assessed: 209 sequence generation, allocation concealment, blinding, incomplete outcome data, selective 210 outcome reporting, and other sources of bias (Higgins et al., 2011). A summary of the studies' 211 overall risk of bias was assessed based on the domains most relevant within the context of the 212 review: participant randomization, incomplete outcome data, and blinding of outcome 213 assessments. Assessments were conducted (unblinded) by the first author (XX) and a research 214 assistant. Two discrepancies were resolved through discussion. In addition to the ROB, visual 215 examination of the funnel plot and an Egger's test was conducted to assess for publication bias.

216 Coding for intervention intensity

Intervention intensity was assessed using a scale that takes into account intervention
duration, frequency of contact, type of contact, and reach (Hendrie, Brindal, Baird, & Gardner,
2013; see Table 2 Notes). Scores were summed to provide an overall intensity score out of 20.
Higher scores indicate higher intensity or more rigorous intervention requirements.

221 Coding moderator variables

222 Coding for study and intervention characteristics. Studies were coded by disability
 223 type. Studies that included more than one type of disability were coded as *mixed*. Physical

activity behaviour sample time point was categorized as the longest sample time point falling within <3 months, 3-6 months, and >6 months. Intervention providers were classified as *health care providers* (physiotherapists, occupational therapists, social workers, nurses), *researcher*, or *other* (exercise specialists, strictly online delivery, and a combination of researcher and peer deliverers). Delivery format was coded as *group*, *individual*, *or individual and group*. Mode of delivery was grouped into *in-person*, *technology* (computer, online video, email), *telephone*, and *in-person and technology/telephone*.

231 **Coding for use of theory**. Studies were coded for use of theory as follows: 0 = no232 mention of theory (including interventions that measured theoretical constructs but did not 233 explicitly identify a theory); 1 = *informed by theory*, when a theory was identified but there was 234 no clear application in the intervention; 2 = applied theory, when a theory was identified and 235 between one and half of the theoretical constructs were applied in components of the 236 intervention; 3 = *testing theory*, when a theory was identified and more than half of its theoretical 237 constructs were measured and tested, or when two or more theories were compared to one 238 another; and 4 = building or creating theory, when theory was revised or expanded upon 239 (Painter, Borba, Hynes, Mays, & Glanz, 2008).

240Coding for behaviour change techniques (BCTs). Each intervention was coded for241BCTs using the 93 Behaviour Change Technique Taxonomy version 1 (BCTTv1) (Michie et al.,2422013). The first author and a research assistant independently coded each study after completing243a BCTTv1 online training program (http://www.bct-taxonomy.com). A study testing the244BCTTv1 produced evidence of good inter-coder and test-retest reliability (Michie et al., 2015).245In the present study, inter-coder agreement was 88% ($\kappa = 0.93$, prevalence-adjusted and bias-246adjusted kappa [KAPPA]= 0.98). Kappa values > 0.81 are considered 'almost perfect' strength

of agreement (Viera & Garrett, 2005). When coding discrepancies arose, the coders discussed until agreement was reached. When this was not possible, the second author was consulted to make a final decision. For the purpose of conducting moderator analyses, a binary coding scheme was used. Studies that employed a given BCT were coded as "1" and those that did not were coded "0". BCTs that were used in both the intervention and control conditions of a particular study were not included in the BCT coding analysis and results. Results from the BCT coding are presented in Supplementary Table 2.

254 Meta-analysis strategy

255 Effect sizes were computed using the Comprehensive Meta-Analysis software program 256 (Borenstein & Rothstein, 2014) and expressed as Hedge's g which provides a conservative 257 estimate of effects (Cheung, Ho, Lim, & Mak, 2012). Effect sizes were interpreted according to 258 Cohen's (1988) conventions (0.2=small, 0.5=medium, 0.8=large). The mean ES across studies 259 was calculated using a random effects model which yields a more conservative estimate than a 260 fixed effects model. Random effects assume the effect size is a combination of the study-specific 261 effect as well as random between study effects (Cheung et al., 2012). When calculating the 262 overall effect, if more than one measure of PA was used, the average effect size was calculated. 263 If there was more than one measurement time-point, the measure immediately post-intervention 264 was used because it likely reflects the largest intervention effect. To test for homogeneity of variance among the effect sizes, an overall O value and I^2 were calculated. A significant O value 265 indicates the data are heterogeneous and warrant examination of moderator variables. I^2 can be 266 267 interpreted as the percentage of total variation across studies that is due to heterogeneity rather than due to chance. I^2 values of 25%, 50%, and 75% represent low, medium and high 268 269 heterogeneity, respectively (Higgins et al., 2003). Sensitivity analyses were conducted to

examine whether the effect of interventions on physical activity behaviour remained when a)
either the subjective versus objective measure of PA was used to calculate overall effect size for
studies that employed both types of measures and b) the longest time point within each study was
used to calculate the overall effect size.

274 Moderator Analyses

Study and Intervention characteristics. Table 3 shows average effect sizes as a function of
 the categorical moderators. Heterogeneity within each category of moderators was evaluated

using the between-study Q statistic (Q_b) (Borenstein, Hedges, Higgins, & Rothstein, 2009).

278 When the Q_b statistic was significant, planned comparisons were calculated to test the strength of

the evidence for differences between levels of the moderating variable. To reduce the risk of type

I errors, significance was set at 0.05/number of comparisons within the moderating variable.

281 Intervention intensity was treated as a continuous, rather than categorical variable; effect sizes

were regressed on intervention intensity in a simple regression model.

283 Behaviour change techniques. The small number of studies precluded the use of meta-

regression to examine the relative effectiveness of BCTs. Instead, when at least three studies

used a given BCT, the average effect size for studies that did not employ that BCT was

subtracted from the average effect size for studies that did employ the BCT (Olander et al.,

287 2013). The Q_b statistic was calculated to test the difference (Borenstein et al., 2009). To test the

relationship between number of BCTs used in a study and the magnitude of behaviour change,

289 effects sizes were regressed on the number of BCTs used in each study.

290

Results

291Two of the 24 articles did not use a control group that would constitute usual care292(Arbour-Nicitopoulos et al., 2009; Bennell et al., 2017) and were included only in the BCT

293 analysis. Thus, 22 articles were included in the meta-analysis of intervention effectiveness (total 294 N = 1670; see Table 2). The most frequently studied disabilities were MS, SCI, and 295 osteoarthritis, whereas people with Parkinson's Disease and cerebral palsy were included only in 296 one and two studies, respectively. Study sample sizes ranged from 12 (Rice, Rice, & Motl, 2015) 297 to 540 (Nimwegen et al., 2013) with a sample size of 92 participants on average. Most 298 interventions were delivered in-person or over the phone, in a one-on-one setting, and ranged 299 from 4 weeks (Kosma, Cardinal, & McCubbin, 2005; Latimer, Martin Ginis, & Arbour, 2006) to 300 2 years (Nimwegen et al., 2013) in duration.

301 Risk of bias

302 Using the Cochrane Risk of Bias tool, most studies were categorized as low risk of bias 303 for random sequence generation (n=18). The remaining six studies were classified as unclear as 304 their method of randomization was not clearly stated. Half of the studies were at low risk of bias 305 for blinding of outcome assessment (n=12). Lastly, more than half of the studies used methods to 306 account for missing data (n=16). Overall, 13 studies were identified as high risk of bias when 307 examining our a priori-identified important domains. It should be noted that less than half were 308 categorized as low risk of bias for allocation concealment (n=9). Selective reporting was difficult 309 to evaluate as almost no studies listed their trial registry to compare a priori listing of outcomes 310 and most studies were categorized to have some other bias (n=20). Visual inspection of the 311 funnel plot showed relatively even distribution between the effect and estimated precision of 312 studies. Egger's test revealed no evidence of publication bias (t=0.42, CI [-2.29, 1.52], p=0.68).

313 Overall effects of interventions on physical activity behaviour

Immediately following intervention, the overall effect size was 0.35 (*k*=22, 95% CI [0.21,
0.48]), indicating that interventions had a small to medium-sized effect on PA behaviour when

compared to usual care or no intervention. A forest plot showing the effect size for each study ispresented in Figure 2.

318 Sensitivity analyses revealed the overall effect was virtually identical for studies that used 319 both a subjective and objective measure of physical activity, when data from the objective 320 measures (g=0.35, k=22, 95% CI [0.24, 0.47]) were analyzed separately from the subjective measures (g=0.35, k=22, 95% CI [0.19, 0.50]). Likewise, when the longest time point sampled 321 322 was used instead of the time point immediately following intervention, the effect size remained 323 small to medium (g=0.41, k=22, 95% CI [0.30, 0.52]). Although the test of heterogeneity was not significant (O(21)=29.85, p=0.095, $I^2=29.65\%$), moderator analyses were conducted as 324 325 outlined a priori (Geyskens, Krishnan, Steenkamp, & Cunha, 2009).

326 Moderators

Study and intervention characteristics. None of the Qb values were significant for any 327 328 of the study or intervention characteristic moderators. The greatest effects were observed in 329 studies of people with multiple sclerosis (MS; g=0.50, k=7, 95% CI [0.26, 0.73]), spinal cord 330 injury (SCI; g=0.54, k=4, 95% CI [0.21, 0.87]), and Parkinson's Disease (g=0.52, k=1, 95% CI 331 [0.06, 0.97]); all had medium-sized effects, although the estimate for Parkinson's Disease was 332 somewhat less precise than for SCI and MS. When analyses were conducted using data from the last measurement time-point in each study, a small to medium-sized effect was found at ≤ 3 333 334 months (g=0.38, k=8, 95% CI [0.17, 0.58]) and >6 months (g=0.32, k=9, 95% CI [0.13, 0.51]), 335 whereas studies with a time point at 3-6 months showed a medium-sized effect (g=0.52, k=8, 336 95% CI [0.34, 0.70]).

For the *intervention provider* variable, interventions delivered by researchers produced a medium-sized effect (g=0.48, k=10, 95% CI [0.27, 0.68]), health care providers produced a small

339	to medium-sized effect ($g=0.31$, $k=7$, 95% CI [0.05, 0.56]), and 'others' produced a small effect
340	with confidence intervals that included zero, suggesting weak evidence for the small effects
341	(g=0.22, k=5, 95% CI [-0.02, 0.47]). For delivery setting, interventions delivered in group
342	settings had medium to large effects (g=0.61, k=3, 95% CI [0.22, 1.01]), individual settings had
343	small to medium effect sizes ($g=0.35$, $k=15$, 95% CI [0.18, 0.48]) while there was weak evidence
344	that combined group and individual delivery was effective ($g=0.20$, $k=4$, 95% CI [-0.13, 0.53]).
345	Regarding mode of delivery, all modes produced medium-sized effects except for the
346	combination of in-person plus technology/phone which produced a small to medium-sized effect
347	(g=0.27, k=8, 95% CI [0.07, 0.47]). Intervention intensity was unrelated to intervention
348	effectiveness (R ² =0.02, B=.14, p=.55, t(21)=0.62)

349 Use of theory. The following frameworks were used: Social cognitive theory, the 350 transtheoretical model, theory of planned behaviour, health action process approach model, and 351 the relapse prevention model. Overall, interventions developed using theory (g=0.53, k=12, 95% 352 CI [0.38, 0.68]) had medium-sized effects, whereas interventions developed without theory had 353 small effects with confidence intervals including zero (g=0.13, k=10, 95% CI [-0.04, 0.29]), 354 p < 0.001. More specifically, studies with no mention of theory showed small effects with 355 confidence intervals including zero (g=0.13, k=10, 95% CI [-0.04, 0.29]); studies that identified 356 theory with no clear application showed a small to medium-sized effect with confidence intervals 357 including zero (g=0.35, k=3, 95% CI [0.00, 0.69]). There were no significant differences 358 between these two theory-use categories (p=1.00). However, studies that applied theory (g=0.62, 359 k=7,95% CI [0.44, 0.81]) or tested theory (g=0.38, k=2,95% CI [0.03, 0.72]) showed the largest 360 effects and when combined showed strong evidence that they yielded larger effects than studies 361 with "no mention of theory", p=.002.

362	Use of behaviour change techniques (BCTs). The most commonly used BCTs were
363	goal setting (behaviour) (k=15), problem solving (k=19), self-monitoring of behaviour (k=12),
364	social support (practical) (k=16), instructions on how to perform the behaviour (k=12), and
365	graded tasks (k=11). Difference scores comparing effect sizes of studies that did versus did not
366	employ a particular BCT showed strong evidence for the effectiveness of two BCTs ('self-
367	monitoring of the behaviour' and 'monitoring of behaviour by others without feedback') and
368	moderate evidence for one BCT ('feedback on behaviour'). Specifically, interventions that
369	incorporated self-monitoring (g=0.45, k=12, 95% CI [0.28, 0.63]) showed larger effects than
370	interventions that did not employ this technique (g=0.21, k=12, 95% CI [0.05, 0.35]), Δg =0.24,
371	p=.04. Interventions that used monitoring by others without feedback ($g=0.05$, $k=3$, 95% CI [-
372	0.22, 0.32) resulted in smaller effects than interventions without this BCT ($g=0.40$, $k=21$, 95%
373	CI [0.28, 0.52]), (Δg =-0.35, p=.02). Interventions that provided feedback on behaviour (g=0.52,
374	k=8,95% CI [0.28, 0.77]) tended to have larger effects than those that did not ($g=0.26$, $k=16$,
375	95% CI [0.14, 0.38]), Δg =0.26, p = .06. Studies that provided instructions on how to perform the
376	behaviour (g=0.44, k=11, 95% CI [0.24, 0.64]) or used problem solving (g=0.40, k=19, 95% CI
377	[0.25, 0.54]) showed the next largest difference in effect sizes compared to interventions that did
378	not employ these techniques (g _{instructions on how to perform the behaviour} =0.26, k=13, 95% CI [0.12, 0.40];
379	$g_{\text{problem solving}}=0.22, k=6, 95\%$ CI [-0.01, 0.45]), $\Delta g_{\text{instructions on how to perform the behaviour}}=0.18, p=0.16;$
380	$\Delta g_{\text{problem solving}}=0.17$, p=0.22. Although Δg for these techniques were not significant, studies using
381	these techniques showed small to moderate effects with relatively tight confidence intervals.
382	There was a medium-sized ($f^2=0.16$) positive relationship between number of BCTs employed
383	and intervention effectiveness that was not statistically significant (B =.37, p =.09).

384

Discussion

385	This paper reports on the first meta-analysis of RCTs testing PA behaviour change
386	interventions among people with physical disabilities. Consistent with our hypotheses, overall,
387	the interventions had small to medium-sized effects on behaviour and yielded significantly larger
388	effects when theory was used. Interventions incorporating 'self-monitoring of behaviour' as a
389	BCT had significantly larger effects, and interventions with 'monitoring of behaviour by others
390	without feedback' had significantly smaller effects. Although none of the intervention
391	characteristics were significant moderators, some interesting patterns emerged. Together, these
392	findings have important implications for guiding the design of future RCTs and for developing
393	more effective PA-enhancing interventions for people with physical disabilities.
394	On average, the RCTs reported a significant effect size of .35. This finding was robust
395	regardless of PA measurement time-point (i.e., <3 months, 3-6 months, or > 6 months post-
396	intervention) or whether a subjective or objective measure of PA was employed. The magnitude
397	of the effects is consistent with meta-analyses conducted in other populations showing that,
398	overall, PA behaviour change interventions produce small- to medium-sized effects (e.g., Conn
399	et al., 2011; Michie et al., 2009). Our findings also align with meta-analyses showing that these
400	interventions are more effective when guided by theory (Taylor et al., 2016; Webb et al., 2010).
401	We found that RCTs that merely mentioned a theory, with no clear application of it, were no
402	more effective than RCTs that did not mention theory whatsoever. This finding speaks to the
403	need for the explicit application of theory in intervention design and testing. As Michie and
404	Prestwich (2010) have noted, theory-based interventions are ideal because: (1) targeting
405	constructs that are theorized to change behaviour can lead to greater intervention effects; (2)
406	measuring the effects of interventions within a theoretical framework allows for the
407	accumulation of evidence to be compared against different contexts, populations, and

behaviours; and (3) using theory can help to identify mechanisms of change, facilitating the
refinement of theories and interventions. Coding schemes are available to evaluate the extent to
which an intervention has used theory (e.g. Michie & Prestwich, 2010; Painter et al. 2008).
These schemes could also be used to guide researchers in how to implement theory when
developing interventions.

413 Most theories currently being used to guide PA interventions in the general population 414 are also being used with populations with disability (cf., Lai et al., 2017). We did note, however, 415 that while self-determination theory (SDT; Deci & Ryan, 1985) is being used increasingly in PA 416 interventions (Silva, Marques, & Teixeira, 2014) it was not used in any of the reviewed RCTs. 417 SDT has shown utility for explaining variance in PA among people with other types of chronic 418 health conditions (e.g., heart disease, Russell & Bray, 2009) but research is needed to test its 419 applicability as an intervention framework in populations with disability. The knowledge to 420 action cycle (KTAC) may also be a useful framework for guiding intervention design (Graham et 421 al., 2006). The KTAC is a dynamic and iterative process involving knowledge creation and 422 action phases, and collaboration between researchers and end-users to identify barriers and 423 develop interventions relevant to the end-user's context. Given that people with disabilities face 424 varied and unique barriers to participation (Martin Ginis et al. 2016), their involvement in the 425 design of PA-enhancing interventions can help ensure these needs are met (cf. Williams et al., 426 2017).

Regarding intervention content, consistent with other meta-analyses (Michie et al., 2009;
Abraham & Michie, 2008; Webb et al., 2010), we found that interventions with self-monitoring
produced significantly greater effects than interventions without this BCT. Interestingly,
interventions that provided feedback on behaviour (another form of monitoring) tended to

produce greater effects, while interventions that used monitoring by others without feedback
resulted in significantly smaller effects. Monitoring is a key construct of control theory (Carver
& Scheier, 1981). Without feedback or knowledge of progress, people cannot evaluate whether
they are approaching their desired goals and cannot make necessary behavioural modifications to
achieve their goals. Thus, it is not surprising that monitoring--by one's self or by others--was
part of the most effective interventions.

437 Although to a lesser extent than self-monitoring, interventions that included problem 438 solving and instructions on how to perform the behaviour tended to produce larger effects than 439 those that did not. Studies that included these techniques produced effect sizes in the small-440 medium range. Problem solving involves both the identification of barriers and the development 441 of solutions to address them. The able bodied literature consistently supports the use of 442 monitoring and feedback (Greaves et al., 2011; Michie, 2009). It makes sense that problem 443 solving and instructions on how to perform the behaviour are two techniques unique to the 444 disability population. Over 200 barriers to PA participation have been identified for people with 445 physical disabilities (Martin Ginis et al., 2016). The sheer number of barriers highlights the need to problem solve in order to overcome obstacles. Furthermore, a lack of PA 446 447 information/knowledge is an often-cited barrier (Martin Ginis et al., 2016; Williams et al., 2017), and many online resources for people with disability are of questionable quality (Shaw et al., 448 449 2017). Our results suggest that BCTs that address these disability-specific issues may be 450 beneficial. 451 Regarding intervention characteristics, consistent with previous findings (e.g., Hobbs et 452 al., 2013; Michie et al., 2009), we found that neither differences in intervention provider,

453 delivery mode, nor setting moderated intervention effectiveness. From these results, one might

454 conclude that how an intervention is delivered is inconsequential. However, this conclusion may 455 be premature given limitations of the meta-analysis and the included studies. Specifically, most 456 of the moderator analysis categories included less than ten studies, thus undermining confidence 457 in the results. For instance, only one RCT employed a peer as part of the intervention team 458 (Froehlich-Grobe et al., 2014). This study had an effect size of g=.44 but had to be included in the "other" intervention provider category (see Table 3). Given that people with disabilities 459 460 identify peers as one of the most important providers of PA information (Faulkner et al., 2010; 461 Letts, Martin Ginis, et al., 2011; Williams et al., 2017), we encourage further investigation of 462 peers as intervention delivery agents. Likewise, all studies in the HCP category were delivered 463 by physiotherapists or occupational therapists with the exception of two studies delivered by a 464 nurse and social worker. Interventions delivered by rehab professionals resulted in small to large 465 effect sizes while the two studies delivered by a nurse and a social worker were the only studies in this category to produce negative effect sizes. Further to the role of health care providers, it is 466 467 unknown whether the training they received to deliver the intervention influenced effectiveness. 468 Only two studies (Bennell et al., 2012; Nooijen et al., 2016) reported the training provided to 469 HCPs. This is concerning considering lack of knowledge in working with people with physical 470 disability is a commonly cited barrier to PA participation (Martin Ginis et al., 2016). More 471 research is needed to better understand the role of the intervention provider and the training they 472 receive.

473 Moreover, the relatively small number of studies meant that we could only look at the 474 overall effects of each intervention characteristic without controlling for interactions with other 475 characteristics or with BCT content (Dombrowski, O'Carroll, & Williams, 2016). When content 476 is controlled, intervention characteristics may make a difference. For instance, Wing et al. (2006) showed that the same intervention was more effective when delivered face to face versus over
the internet. Given that the act of getting to an interventionist often can be thwarted by
transportation, accessibility, and weather barriers, alternative forms of intervention delivery are
needed to ensure access and inclusion (Williams et al., 2017). In order to develop evidence-based
best-practices, it will be important for researchers to conduct comparisons of different
intervention delivery characteristics while controlling for intervention content.

483 Consistent with previous findings (Greaves et al., 2011; Taylor et al., 2016; Webb et al., 484 2010), we found that the number of BCTs used and intervention intensity were unrelated to 485 behaviour change. Intuitively, complex and resource-intensive interventions might be expected 486 to yield the biggest effects; this was not the case. For instance, Latimer et al. (2006)'s theory-487 based intervention employed one BCT, had the lowest intensity score, and produced medium-488 sized effects. Brosseau et al.'s (2012) atheoretical intervention included 10 BCTs, had the 489 highest intensity score, and had negative effects. In fact, it is possible the greater time required 490 for the more intensive interventions posed as challenging for participants to sustain. The finding 491 that 'more isn't necessarily better' has important implications for resource allocation. Resources 492 may be better spent *developing* an intervention that is rich in theory and selective BCT content. 493 rather than *delivering* a complex intervention in a high intensity manner (e.g., long duration, 494 several BCTs).

In addition to the previously mentioned limitations of the moderator analyses, a few other limitations warrant mention. First, over half of the RCTs were identified as having a high risk of bias. Future studies should address the issues of small sample size and neglecting trial registration. Although we acknowledge the challenges in collecting data in these populations, including adequately powered sample sizes is especially pertinent given the heterogeneity of

500 participant function and subsequently physical activity participation in physical disability. Trial 501 registry is an integral step to improving transparency and ensuring results are not selectively 502 reported (Higgins et al., 2011). Despite these limitations, the authors suggest the effects of 503 interventions on physical activity in physical disability remain robust. Most studies were 504 conservative and performed intention to treat analyses, no publication bias was found, and the 505 small to medium overall effect of interventions on physical activity was consistent regardless of 506 measure used or time point sampled. Second, two-thirds of BCTs included in Michie et al. 507 (2013)'s taxonomy have not yet been tested in studies of people with disability. Thus, 508 conclusions regarding the most effective BCTs are restricted to comparisons involving a small 509 subset of possible BCTs. Similarly, the limited number of studies testing BCTs precluded the use 510 of meta-regression to look at the relative effectiveness of BCTs. Third, it was impossible to tease 511 out the effectiveness of individual BCTs within a given study. With the exception of two studies 512 (Arbour-Nicitopoulos, Martin Ginis, & Latimer, 2009; Latimer, Martin Ginis, & Arbour, 2006), 513 all RCTs used more than one BCT. Fourth, we only reported presence or absence of BCTs, not 514 frequency or intensity of use; these delivery factors might moderate the impact of BCTs. Further, 515 the identification of BCTs does not account for differences in *how* the BCT is delivered. 516 Intrapersonal, interpersonal, and external factors can influence the effect of intervention beyond 517 simply what is done to them (Ogden, 2016). Fifth, because of concerns about including studies 518 that had not been vetted through peer review, unpublished studies were excluded from the meta-519 analysis. While this decision may raise concerns about publication bias, results of the Egger's 520 test indicate otherwise. Finally, analyses combined studies of people with different types of 521 physical disabilities. People with disabilities are heterogeneous and the needs and preferences of 522 one group may not necessarily be the same for all.

523	Some key strengths of this meta-analysis also warrant mention. First, our focus on RCTs
524	allowed us to estimate intervention effects relative to control groups, rather than relying on
525	within-subjects studies which can over-estimate the true effects of an intervention. Second, we
526	coded for multiple intervention characteristics. Because it is unlikely that just one characteristic
527	will dictate whether an intervention is effective, it is important to examine multiple factors.
528	Third, we coded for BCTs. Coding BCTs improves intervention replication accuracy, faithful
529	intervention implementation, reliable systematic review extraction methodology, and
530	intervention reporting (Michie et al., 2013). Furthermore, analyses of BCTs help identify the
531	techniques to be used in future interventions and provide a link to theory, thus facilitating an
532	understanding of mechanisms and an evaluation of intervention success (Abraham & Michie,
533	2008; Michie, Fixsen, Grimshaw, & Eccles, 2009).
534	In summary, the results of this meta-analysis indicate that overall, PA-enhancing
535	interventions are effective for increasing PA in adults with physical disabilities. The most
536	effective interventions are theory-based and utilize BCTs that incorporate monitoring or address
537	unique challenges experienced by people with disabilities. Although the moderating effects of
538	intervention characteristics require further investigation, it is clear that more is not necessarily
539	better; simply increasing the number of BCTs and intervention intensity does not translate into
540	greater increases in behaviour. Moving forward, we urge researchers and practitioners to involve
541	end-users in the design, testing and implementation of interventions. An integrated knowledge
542	translation approach (e.g. guided by the KTAC) will help to develop novel interventions that
543	address the unique barriers and challenges to PA faced by people with physical disabilities.
544	

PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

Table 1. Study characteristics

First Author, year^	Disability/Health Condition*	Total sample size	Sample time points	Theory [#]	Use of behaviour change theory [‡]	PA Measure ^s
Arbour- Nicitopoulos, 2009	SCI	44	Week 5 and 10	НАРА	Theory applied	PARA-SCI (short version)
Bennell, 2017 Bossen, 2013	Knee OA Knee/ Hip OA	168 199	Month 6, 12, 18 Month 3 and 12	N/A N/A	None None	PASE, accelerometer, adherence PASE Accelerometer (sub group)
Brosseau, 2012	Knee OA	222	Month 3, 6, 9, 12 and 6 month follow-up	N/A	None	Participant log books and site- reported program adherence
Froelich-Grobe, 2004	Arthritis, SCI, MS, MD, Fibromyalgia, Orthopedic problems, Spina Bifida, CP, TBI, lupus, stroke/amputation/post polio (mobility limitations)	75 (women only)	Weekly for 25 weeks	N/A	None	Self-report physical activity log
Froelich-Grobe, 2014	SCI, CP, Spina bifida, MS, amputation, polio, fibromyalgia, lupus, stroke, TBI	128	Weekly for 52 weeks	SCT Relapse Prevention Theory	Theory applied	Self-reported minutes of weekly physical activity
Hughes, 2006	OA	215	2, 6, 12 months	SCT	Theory applied	6-item recall measure (type, duration, frequency)
Kosma, 2005	Amputation, CP, MS, MD, SCI, other	75	4 weeks	TTM	Theory tested	PASIPD LTPA sub scores only
Latimer, 2006	SCI	37	8 weeks	TPB	Theory applied	PARA-SCI and # of days the participant engaged in >30 min of PA
Learmonth, 2017	MS	53	Weekly up to 16 weeks	SCT	Theory tested	GLTEQ Accelerometer
Maher, 2010	СР	41	10, 20 weeks	SCT	Theory identified	Accelerometer (7 days) MARCA (4 day self-report)
McAuley, 2007	MS	15	12 weeks	SCT	Theory applied	Daily attendance logs
Nooijen, 2015	SCI	39	6-7 weeks, 8 months, 14 months		None	Body fixed 3-axis accelerometers PASIPD
O'Brien, 2013	Lower Limb OA	15	12 weeks	N/A	None	Adherence: Self- report, Class- based Adherence: SIRAS

PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

Pilutti, 2014	MS	76	6 months	SCT	Theory applied	GLTEQ ActiCraph accelerometers
Plow, 2014	MS	40	12, 24 weeks	SCT and TTM	Theory applied	GLTEQ PADS
Rice, 2015	MS	12	3 months	SCT	Theory identified	Accelerometer
Rimmer, 2013	SCI, MS, Spina Bifida , CP, Stroke, Lupus	64	9 months		None	PADS
Slaman, 2014	СР	36	6 months	N/A	None	PASIPD VotaMove system
Smith, 2012	MS	13	8 weeks		None	Exercise adherence reported by research staff
Suh, 2015	MS	68	6 weeks	SCT	Theory applied	GLTEQ and pedometers
Talbot, 2003	Knee Osteoarthritis	34	24 weeks	N/A	None	Tritrac-R3D accelerometer Digi-walker pedometer
van Nimwegan, 2013	PD	540	6, 12, 18, 24 months	SCT TTM	Theory identified	LAPAQ 7-day diary Ambulatory activity monitor
Wise et al., 2009	SCI	21	3 months, 6 months	N/A	None	Self-reported personal physical activity log

Note: ^References for studies included in the meta-analysis are found in Supplementary File 2.

*CP=cerebral palsy, MD=muscular dystrophy, MS=multiple sclerosis, OA=osteoarthritis, PD=Parkinson's disease, SCI=spinal cord injury, TBI=traumatic brain injury

[#]HAPA=Health Action Process Approach, SCT=social cognitive theory, TPB=theory of planned behaviour, TTM=transtheoretical model

^SGLTEQ= Godin Leisure Time Exercise Questionnaire, LAPAQ= LASA Physical Activity Questionnaire, LTPA=leisure time physical activity, MARCA= Multimedia Activity Recall for Children and Adolescents, PARA-SCI=Physical Activity Recall Assessment for People with Spinal Cord Injury, PASE= Physical Activity Scale for the Elderly, PASIPD= Physical Activity Scale for Individuals with Physical Disabilities, SIRAS= Sport Injury Rehabilitation Adherence Scale

First author, year	Mode of delivery	Provider	Group or individual	Setting	Contact duration	Intensity score [#]	Contact details	Effect size
Arbour- Nicitopoulos, 2009	Telephone	Researcher	Individual	Home	10 weeks	11	Baseline: 20-30 min telephone interview Sent calendar	0.70*
Bennell, 2017	In-person Telephone	Physiotherapists, nurses, occupational therapist, health psychologist	Individual	Home and clinic	6 months	15	5 x 30 minute individual PT/educational sessions 6-12 telephone coaching sessions	0.23*
Bossen, 2013	Technology (Telephone/ email/ text/ computer module training)	Online	Individual	Home	9 weeks	10	Weekly modules	0.01
Brosseau, 2012	In-person Telephone	Physical activity specialist	Individual and group	Walking clubs Classes	12 Months	17	Baseline: intro information session Weekly walking sessions (65 mins) with PA specialist present for $\geq 3x / wk$ 20x2 hour weekly group sessions months 0-6: Monthly face-to-face meetings (first 6 months) Months 7-12: Telephone counselling (unspecified frequency)	-0.10
Froelich- Grobe, 2004	In-person Telephone	Exercise physiologist	Individual and group	Home and/or commu-nity fitness centre	25 weeks	16	Baseline: Day-long educational workshop 1x30-45 minute individualized PA counselling phone call Paired with program partner for weekly telephone support Self- reward encouraged weekly	0.45
Froelich- Grobe, 2014	In-person Telephone Mail	Professional patient educator/peer Researcher	Individual and group	Particip-ant choice	26 weeks	15	Day-long educational workshop Months 1-2: weekly phone calls Months 3-4: biweekly phone calls Months 5-6: monthly phone calls Monthly newsletters by mail	.46
Hughes, 2006	In-person	Physiotherapists Researchers	Group	Senior's centres	8 weeks	11	90 minutes supervised training and educational coaching 3x/wk	0.89
Kosma, 2005	Technology (Website,	Computer	Group	Home	4 weeks	10	Weekly email for link to lesson plan	0.35

Table 2. Intervention characteristics

PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

	E-mail)							
Latimer, 2006	Telephone	Researcher	Individual	Home	4 weeks	10	Baseline: Interview, emailed calendar Week 4: Update goals, emailed calendar	0.59
Learmonth, 2017	Technology (Skype and	Researcher	Individual	Home	16 weeks	13	Month 1: skype calls=1-4, newsletters=1-2	0.42
	newsletter)						Month 2: skype calls=5, Newsletters=3-4 Month 3: skype calls=6-7, Newsletters=6 Month 4: skype calls=8, Newsletters=6	
Maher, 2010	In-person Technology (Text, e-mail, website)	Researcher	Individual	Home	8 weeks	13	One intro session Weekly emails or text messages to use the site	0.44
McAuley, 2007	In-person	Researcher	Group	Health and wellness centre	12 weeks	11	Bi-weekly workshops Buddy groups formed	0.44
Nooijen, 2015	In-person Telephone	Physiotherapist or occupational therapist	Individual	Rehab centre	8 months	12	Bimonthly coaching	0.60
O'Brien, 2013	In-person	Researcher	Individual	Research setting	12 weeks	10	1 intro session	-0.04
Pilutti, 2014	Technology (Website and video)	Researchers	Individual	Home	6 months	14	15 web-based video coaching sessions (7 in 1st two months, 6 in second 2 months, 2 in final 2 months) Website (new content available 7 times in first 2 months, 4 in second 2 months, twice in final 2 months)	0.82
Plow, 2014	In-person Pamphlet	Researcher	Individual	Home	12 weeks	14	2 in-person home exercise prescription sessions Customized pamphlets mailed every 3 weeks for 24 weeks (first time in person)	0.72
Rice, 2015	In-person Telephone	Occupational therapists Physiotherapists	Individual	Home	3 months	13	Weekly phone calls	0.22
Rimmer, 2013	Telephone	Researcher	Individual	Home	9 months	14	Months 1-4: Weekly telephone coaching Months 5-7: biweekly coaching Months 8-9: monthly coaching Monthly newsletter and individualized feedback	0.19
Slaman,	In-person	Physiotherapists	Individual	Home	6	15	Months 1-6: monthly counselling 30	0.32

PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

2014		Movement therapist		Rehabilita- tion centre	Months		minute sessions + 2-4 sports participation counselling sessions Optional sports-specific training	
Smith, 2012	In-person	Social worker Physiotherapist (supervised exercise)	Individual	Interview space	8 weeks	10	3 x 30-60 minute sessions of motivational interviewing	-0.15
Suh, 2015	Telephone	Researcher	Individual	Home	6 weeks	11	Weekly newsletters and phone calls	0.33
Talbot, 2003	In-person	Registered nurse	Individual and group	Class	24 weeks	11	Brief individual counselling session once every 4 weeks	-0.10
van Nimwegan, 2013	In-person	Physiotherapists	Individual	Community hospitals	2 years	15	Baseline: information brochure Year 1: 16 coaching sessions + maximum of 18 physical therapy sessions Year 2: 12 coaching sessions + maximum of 23 physical therapy sessions	0.52
Wise et al., 2009	In-person Telephone	Physiotherapists	Individual	Home	3 months	13	Baseline: individualized instructions on in-home PA program Month 1: Telephone calls 1x/wk Month 2: 2 telephone calls Month 3: 1 telephone call	0.08

Note: If provider was unspecified researcher was assumed. POWERS group was used from Rimmer et al. (2010). The walking and behavioural intervention group was used from Brosseau et al. (2012).

[#]Intervention intensity scale scoring: *Intervention duration*: 1 = <6 weeks, 2=6 to 11 weeks, 3=12 weeks to 5 months, 4=6 to 12 months and 5 = >12 months; *frequency of contact*: 1 = annually, 2 = bimonthly to quarterly, 3 = monthly, 4 = weekly and 5 = daily; *type of contact*: 1 = environmental (physical, policy or legislative level), 2 = environmental with a small group/ education component, 3 = group, 4 = group with an individual component (goal setting, homework task) and 5 = individual (one-on-one); *reach (number of settings used to reach the target audience)*: 1 = one setting, 3 = two settings and 5 = three settings.

*Not included in the overall effect size calculation.

Table 3. Moderating variables for the effect of intervention on physical activity behaviour

Category	df	Qb	Level	k	ES	SE	Lower CI	Upper CI	i^2
Overall	21	29.85* (Q)		22	0.35	0.07	0.21	0.48	29.65
Disability Type	5	3.08	СР	2	0.20	0.22	-0.24	0.64	0
			Mixed	4	0.37	0.10	0.17	0.58	0
			MS	7	0.50	0.12	0.26	0.73	0
			OA	6	0.18	0.17	-0.16	0.51	71.00
			PD	1	0.52	0.23	0.06	0.97	0
			SCI	4	0.54	0.17	0.21	0.87	0
Sample Time	4	1.61	<3 months	8	0.38	0.11	0.17	0.58	0
Point			3-6 months	7	0.52	0.09	0.34	0.70	24.51
			>6 months	9	0.32	0.10	0.13	0.51	0
Theory	1	12.90*	Yes	12	0.53	0.08	0.38	0.68	0
			No	10	0.13	0.08	-0.04	0.29	0
Theory intensity	3	15.64*	0	10	0.13	0.08	-0.04	0.29	0
			1	3	0.35	0.18	0.00	0.69	0
			2^{a}	7	0.62	0.09	0.44	0.81	0
			3 ^a	2	0.38	0.18	0.03	0.72	0
Provider	5	9.41	НСР	7	0.31	0.13	0.05	0.56	0
			Researcher	10	0.49	0.08	0.32	0.66	27.6
			Other	5	0.21	0.08	0.03	0.38	49.6
Group/individual	2	2.49	Group	3	0.61	0.20	0.22	1.01	38.23
delivery			Individual	15	0.35	0.08	0.20	0.49	0
			Individual and group	4	0.20	0.17	-0.13	0.53	60.42
Mode of delivery	4	0.98	In-person	8	0.41	0.15	0.12	0.70	37.15
			In-person and						
			Technology/Telephone	8	0.27	0.10	0.07	0.47	19.84
			Technology	3	0.39	0.24	0.05	0.73	53.12
			Telephone	3	0.32	0.14	0.04	0.60	0

Note. CI=confidence interval, CP=cerebral palsy, df= degrees of freedom, ES=effect size, HCP=health care provider, k=number of studies, MS=multiple sclerosis, OA=osteoarthritis, OT=occupational therapist, PD=Parkinson's disease, Qb= measure of homogeneity, SCI=spinal cord injury, SE=standard error, *p<0.05, ^a=significantly different from theory intensity of 0 (p<0.0125; adjusted for number of comparisons)

Figure 1. Systematic literature search and exclusion of papers.

Figure 2. Forest plot of study effect sizes

References

- Abraham, C., & Michie, S. (2008). A taxonomy of behavior change techniques used in interventions. *Health Psychology*, *27*(3), 379–387. http://doi.org/10.1037/0278-6133.27.3.379
- Arbour-Nicitopoulos, K. P., Martin Ginis, K. A., & Latimer, A. E. (2009). Planning, leisure-time physical activity, and coping self-efficacy in persons with spinal cord injury: a randomized controlled trial. *Archives of Physical Medicine and Rehabilitation*, 90(12), 2003–11. http://doi.org/10.1016/j.apmr.2009.06.019
- Bennell, K. L., Egerton, T., Bills, C., Gale, J., Kolt, G. S., Bunker, S. J., ... Hinman, R. S. (2012). Addition of telephone coaching to a physiotherapist-delivered physical activity program in people with knee osteoarthritis : A randomised controlled trial protocol.
- Borenstein, M., Hedges, L. V, Higgins, J. P. T., & Rothstein, H. R. (2009). *Introduction to Meta-Analysis*. Wiley and Sons.
- Borenstein, M., & Rothstein, H. (2014). Comprehensive meta-analysis: a computer program for research synthesis. Englewood, NJ: Biostat, Inc.
- Carver, C., & Scheier, M. (1981). The self-attention-induced feedback loop and social facilitation. *Journal of Experimental Psychology*, *17*, 545–568.
- Cheung, M. W. L., Ho, R. C. M., Lim, Y., & Mak, A. (2012). Conducting a meta-analysis: Basics and good practices. *International Journal of Rheumatic Diseases*, *15*(2), 129–135. http://doi.org/10.1111/j.1756-185X.2012.01712.x
- Conn, V. S., Hafdahl, A. R., & Mehr, D. R. (2011). Interventions to increase physical activity among healthy adults: meta-analysis of outcomes. *American Journal of Public Health*, *101*(4), 751–758. http://doi.org/10.2105/AJPH.2010.194381
- Davidson, K. W., Goldstein, M., Kaplan, R. M., Kaufmann, P. G., Knatterud, G. L., Orleans, C. T., ... Whitlock, E. (2003). Evidence-based behavioral medicine: What is it and how do we achieve it? *Annals of Behavioral Medicine*, 26(3), 161–171.
- Deci, E., & Ryan, R. (1985). *Intrinsic motivation and self-determination in human behavior*. New York: Plenum.
- Dombrowski, S. U., O'Carroll, R. E., & Williams, B. (2016). Form of delivery as a key " active ingredient " in behaviour change interventions. *British Journal of Health Psychology*, *21*, 733–740. http://doi.org/10.1111/bjhp.12203
- Faulkner, G., Gorczynski, P., Arbour, K., Letts, L., Wolfe, D., & Martin Ginis, K. (2010). Messengers and methods of disseminating health information among individuals with spinal cord injury: A scoping review. *Handbook of Spinal Cord Injuries*, (416), 349–374.
- Foster, C., Hillsdon, M., Thorogood, M., Kaur, A., & Wedatilake, T. (2005). Interventions for promoting physical activity (review). *The Cochrane Library*. http://doi.org/10.1002/14651858.CD003180.pub2.www.cochranelibrary.com
- Froehlich-Grobe, K., Lee, J., Aaronson, L., Nary, D. E., Washburn, R. A., & Little, T. D. (2014). Exercise for everyone : A randomized controlled trial of project workout on wheels in promoting exercise among wheelchair users. *Archives of Physical Medicine and Rehabilitation*, 95(1), 20–28. http://doi.org/10.1016/j.apmr.2013.07.006
- Geyskens, I., Krishnan, R., Steenkamp, J.-B., & Cunha, P. (2009). A review and evaluation of meta-analysis practices in management. *Journal of Management*, 35, 393–419. http://doi.org/10.1177/0149206308328501
- Graham, I. D., Logan, J., Harrison, M. B., Straus, S. E., Tetroe, J., Caswell, W., & Robinson, N. (2006). Lost in knowledge translation: time for a map? *The Journal of Continuing*

Education in the Health Professions, 26(1), 13-24. http://doi.org/10.1002/chp.47

- Greaves, C. J., Sheppard, K. E., Abraham, C., Hardeman, W., Roden, M., Evans, P. H., & Schwarz, P. (2011). Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. *BMC Public Health*, 11(1), 119. http://doi.org/10.1186/1471-2458-11-119
- Hartling, L., Bond, K., Vandermeer, B., Seida, J., Dryden, D. M., & Rowe, B. H. (2011). Applying the risk of bias tool in a systematic review of combination long-acting betaagonists and inhaled corticosteroids for persistent asthma. *PLoS ONE*, 6(2), 2–7. http://doi.org/10.1371/journal.pone.0017242
- Hartling, L., Ospina, M., Liang, Y., Dryden, D., Hooton, N., Krebs Seida, J., & Klassen, T. (2009). Risk of bias versus quality assessment of randomised controlled trials: cross sectional study. *British Medical Journal*, 339, 1–6. http://doi.org/10.1136/bmj.b4012
- Hendrie, G. A., Brindal, E., Baird, D., & Gardner, C. (2013). Improving children's dairy food and calcium intake: can intervention work? A systematic review of the literature. *Public Health Nutrition*, *16*(2), 365–76. http://doi.org/10.1017/S1368980012001322
- Higgins, J. P. T., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., & Oxman, A. D. (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *British Medical Journal*, 343. http://doi.org/10.1136/bmj.d5928
- Higgins, J. P. T., Thompson, S. G., Deeks, J. J., Douglas, G., Higgins, J. P. T., Thompson, S. G., ... Altman, D. G. (2003). Measuring inconsistency in meta-analyses service Measuring inconsistency in meta-analyses. *British Medical Journal*, 327, 557–560. http://doi.org/10.1136/bmj.327.7414.557
- Hobbs, N., Godfrey, A., Lara, J., Errington, L., Meyer, T. D., Rochester, L., ... Sniehotta, F. F. (2013). Are behavioral interventions effective in increasing physical activity at 12 to 36 months in adults aged 55 to 70 years? A systematic review and meta-analysis. *BMC Medicine*, 11(1), 75. http://doi.org/10.1186/1741-7015-11-75
- Kosma, M., Cardinal, B. J., & McCubbin, J. A. (2005). A pilot study of a web-based physical activity motivational program for adults with physical disabilities. *Disability and Rehabilitation*, *27*(23), 1435–1442. http://doi.org/10.1080/09638280500242713
- Lai, B. W., Young, J.-J., Bickel, S., Motl, R., & Rimmer, J. H. (2017). Current trends in exercise intervention research, technology, and behavioral change strategies for people with disabilities. *American Journal of Physical Medicine & Rehabilitation*, 1–15. http://doi.org/10.1097/PHM.000000000000743
- Latimer, A. E., Martin Ginis, K. A., & Arbour, K. P. (2006). The efficacy of an implementation intention intervention for promoting physical activity among individuals with spinal cord injury: A randomized controlled trial. *Rehabilitation Psychology*, 51(4), 273–280. http://doi.org/10.1037/0090-5550.51.4.273
- Learmonth, Y. C., Adamson, B. C., Kinnett-Hopkins, D., Bohri, M., & Motl, R. W. (2017). Results of a feasibility randomised controlled study of the guidelines for exercise in multiple sclerosis project. *Contemporary Clinical Trials*, 54, 84–97. http://doi.org/10.1016/j.cct.2016.11.012
- Letts, L., Martin Ginis, K. A., Faulkner, G., Colquhoun, H., Levac, D., & Gorczynski, P. (2011). Preferred methods and messengers for delivering physical activity information to people with spinal cord injury: a focus group study. *Rehabilitation Psychology*, 56(2), 128–137. http://doi.org/10.1037/a0023624
- Martin Ginis, K. A., Ma, J. K., Latimer-Cheung, A. E., & Rimmer, J. (2016). A systematic

review of review articles addressing factors related to physical activity participation among children and adults with physical disabilities. *Health Psychology Review*, 7199(June), 1–31. http://doi.org/10.1080/17437199.2016.1198240

- Michie, S., Abraham, C., Eccles, M. P., Francis, J. J., Hardeman, W., & Johnston, M. (2011). Strengthening evaluation and implementation by specifying components of behaviour change interventions: a study protocol. *Implementation Science*, 6(1), 10. http://doi.org/10.1186/1748-5908-6-10
- Michie, S., Abraham, C., Whittington, C., McAteer, J., & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: a meta-regression. *Health Psychology : Official Journal of the Division of Health Psychology, American Psychological Association*, 28(6), 690–701. http://doi.org/10.1037/a0016136
- Michie, S., Ashford, S., Sniehotta, F., Dombrowski, S., Bishop, A, & French, D. (2011). A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: the CALO-RE taxonomy., (April 2012), 37–41. http://doi.org/10.1080/08870446.2010.540664
- Michie, S., Carey, R. N., Johnston, M., Rothman, A. J., Bruin, M. De, Kelly, M. P., & Connell, L. E. (2016). From theory-inspired to theory-based interventions : A protocol for developing and testing a methodology for linking behaviour change techniques to theoretical mechanisms of action. *Annals of Behavioral Medicine*. http://doi.org/10.1007/s12160-016-9816-6
- Michie, S., Fixsen, D., Grimshaw, J. M., & Eccles, M. P. (2009). Specifying and reporting complex behaviour change interventions: the need for a scientific method. *Implementation Science*, 4, 40. http://doi.org/10.1186/1748-5908-4-40
- Michie, S., Johnson, B. T., & Johnston, M. (2015). Advancing cumulative evidence on behaviour change techniques and interventions: a comment on Peters, de Bruin, and Crutzen. *Health Psychol Review*, *9*(1), 25–29. http://doi.org/10.1080/17437199.2014.912538
- Michie, S., & Prestwich, A. (2010). Are interventions theory-based? Development of a theory coding scheme. *Health Psychology*, 29(1), 1–8. http://doi.org/10.1037/a0016939
- Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., ... Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. *Annals of Behavioral Medicine*, 46(1), 81–95. http://doi.org/10.1007/s12160-013-9486-6
- Michie, S., Wood, C. E., Johnston, M., Abraham, C., Francis, J. J., & Hardeman, W. (2015). Behaviour change techniques: The development and evaluation of a taxonomic method for reporting and describing behaviour change interventions (a suite of five studies involving consensus methods, randomised controlled trials and analysis of qualitative data. *Health Technology Assessment*, 19(99), 1–187. http://doi.org/10.3310/hta19990
- Mulligan, H., Miyahara, M., & Nichols-Dunsmuir, A. (2016). Multiple perspectives on accessibility to physical activity for people with long-term mobility impairment. *Scandinavian Journal of Disability Research*, 7419, 1–12. http://doi.org/10.1080/15017419.2016.1167772
- Nimwegen, M. Van, Overeem, S., Smulders, K., Dontje, M. L., Borm, G. F., Backx, F. J. G., ... Munneke, M. (2013). Promotion of physical activity and fitness in sedentary patients with Parkinson's disease : randomised controlled trial. *BMJ*, 346(f576). http://doi.org/10.1136/bmj.f576

- Nooijen, C. F. J., Stam, H. J., Bergen, M. P., Bongers-Janssen, H. M. H., Valent, L., van Lageveld, S., ... van den Berg-Emons, R. J. G. (2016). A behavioural intervention increases physical activity in people with subacute spinal cord injury: a randomised trial. *Journal of Physiotherapy*, 62(1), 35–41. http://doi.org/10.1016/j.jphys.2015.11.003
- Ogden, J. (2016). Celebrating variability and a call to limit systematisation : the example of the Behaviour Change Technique Taxonomy and the Behaviour Change Wheel, *7199*(July 2017). http://doi.org/10.1080/17437199.2016.1190291
- Olander, E. K., Fletcher, H., Williams, S., Atkinson, L., Turner, A., & French, D. P. (2013). What are the most effective techniques in changing obese individuals ' physical activity self-efficacy and behaviour : a systematic review and meta-analysis. *International Journal of Behavioral Nutrition and Physical Activity*, *10*(29), 1–15.
- Painter, J. E., Borba, C. P. C., Hynes, M., Mays, D., & Glanz, K. (2008). The use of theory in health behavior research from 2000 to 2005 : A systematic review. *Annals of Behavioral Medicine*, 35, 358–362. http://doi.org/10.1007/s12160-008-9042-y
- Rice, I. M., Rice, L. A., & Motl, R. W. (2015). Promoting physical activity through a manual wheelchair propulsion intervention in persons with multiple sclerosis. *Archives of Physical Medicine and Rehabilitation*, 96(10), 1850–1858. http://doi.org/10.1016/j.apmr.2015.06.011
- Russell, K. L., & Bray, S. R. (2009). Self-Determined Motivation Predicts Independent, Home-Based Exercise Following Cardiac Rehabilitation, 54(2), 150–156. http://doi.org/10.1037/a0015595
- Shaw, R. B., Mallory, K. D., Arkell, J., & Martin Ginis, K. A. (2017). The technical quality of online leisure time physical activity resources for people with physical disabilities. *Disability and Health Journal*, 10(1), 93–99. http://doi.org/10.1016/j.dhjo.2016.09.002
- Silva, M. N., Marques, M. M., & Teixeira, P. J. (2014). Testing theory in practice : The example of self-determination theory-based interventions. *The European Health Psychologist*, *16*(5), 171–180.
- Sport England. (2016). Active Lives Survey 2015-16.
- Taylor, N., Conner, M., Lawton, R., Taylor, N., Conner, M., & Lawton, R. (2016). The impact of theory on the effectiveness of worksite physical activity interventions : a meta- analysis and meta-regression. *Health Psychology Review*, 6(1), 33–37.
- Van Den Berg-Emons, R. J., Bussmann, J. B., & Stam, H. J. (2010). Accelerometry-based activity spectrum in persons with chronic physical conditions. *Archives of Physical Medicine and Rehabilitation*, 91(12), 1856–1861. http://doi.org/10.1016/j.apmr.2010.08.018
- Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement : The Kappa statistic. *Family Medicine*, 360–363.
- Webb, T. L., Joseph, J., Yardley, L., & Michie, S. (2010). Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. *Journal of Medical Internet Research*, 12(1), 1–18. http://doi.org/10.2196/jmir.1376
- Williams, T. L., Ma, J. K., & Martin Ginis, K. A. (2017). Participant experiences and perceptions of physical activity- enhancing interventions for people with physical impairments and mobility limitations: A meta-synthesis of qualitative research evidence. *Health Psychology Review*, 11(2), 179–196.
- Wing, R. R., Tate, D. F., Gorin, A. A., Raynor, H. A., & Fava, J. L. (2006). A self-regulation program for maintenance of weight loss. *New England Journal of Medicine*, 355, 1563– 1571.

Supplementary File 1: Sample Search Strategy

Medline:

- 1. exp Intervention Studies/
- 2. exp Program Evaluation/ or program*.mp. or exp Program Development/
- 3. exp Curriculum/
- 4. "Physical Education and Training"/
- 5. promotion.mp.
- 6. initiative.mp.
- 7. behavio\$r change.mp.
- 8. strateg*.mp.
- 9. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8
- 10. exp Sports/
- 11. exercise/ or circuit-based exercise/ or plyometric exercise/ or resistance training/ or running/ or swimming/ or walking/
- 12. exp Physical Fitness/
- 13. exp Exercise Therapy/
- 14. physical activ*.mp.
- 15. 10 or 11 or 12 or 13 or 14
- 16. exp Osteoarthritis/
- 17. exp Parkinson Disease/
- 18. exp Multiple Sclerosis/
- 19. exp Spinal Cord Injuries/
- 20. exp Amputees/
- 21. exp Cerebral Palsy/
- 22. exp Stroke/
- 23. exp Disabled Persons/
- 24. 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23
- 25. 9 and 15 and 24

Supplementary File 2: References for studies included in the meta-analysis

- Arbour-Nicitopoulos, K. P., Martin Ginis, K. A., & Latimer, A. E. (2009). Planning, leisure-time physical activity, and coping self-efficacy in persons with spinal cord injury: a randomized controlled trial. *Archives of Physical Medicine and Rehabilitation*, 90(12), 2003–11. http://doi.org/10.1016/j.apmr.2009.06.019
- Bennell, K. I., Campbell, P. K., Egerton, T., Metcalf, B., Kasza, J., Forbes, A., ... Hinman, R. S. (2017). Telephone coaching to enhance a home-based physical activity program for knee osteoarthritis : A randomized clinical trial. *Arthritis Care and Research*, 69(1), 84–94. http://doi.org/10.1002/acr.22915
- Bossen, D., Veenhof, C., Van Beek, K. E., Spreeuwenberg, P. M., Dekker, J., & De Bakker, D. H. (2013). Effectiveness of a web-based physical activity intervention in patients with knee and/or hip osteoarthritis: randomized controlled trial. *Journal of Medical Internet Research*, 15(11), e257. http://doi.org/10.2196/jmir.2662
- Brosseau, L., Wells, G. A., Kenny, G. P., Reid, R., Maetzel, A., Tugwell, P., ... Chen, L. (2012). The implementation of a community-based aerobic walking program for mild to moderate knee osteoarthritis (OA): a knowledge translation (KT) randomized controlled trial (RCT): Part I: The Uptake of the Ottawa Panel clinical practice guidelines (CPGs). *BMC Public Health*, *12*(1), 871. http://doi.org/10.1186/1471-2458-12-871
- Froehlich-Grobe, K., Lee, J., Aaronson, L., Nary, D. E., Washburn, R. A., & Little, T. D. (2014). Exercise for everyone : A randomized controlled trial of project workout on wheels in promoting exercise among wheelchair users. *Archives of Physical Medicine and Rehabilitation*, 95(1), 20–28. http://doi.org/10.1016/j.apmr.2013.07.006
- Froehlich-Grobe, K., & White, G. W. (2004). Promoting physical activity among women with mobility impairments: A randomized controlled trial to assess a home- and communitybased intervention. *Archives of Physical Medicine and Rehabilitation*, 85(4), 640–648. http://doi.org/10.1016/j.apmr.2003.07.012
- Hughes, S. L., Seymour, R. B., Campbell, R. T., Huber, G., Pollak, N., Sharma, L., & Desai, P. (2006). Long-term impact of Fit and Strong! on older adults with osteoarthritis. *The Gerontologist*, 46(6), 801–814.
- Kosma, M., Cardinal, B. J., & Mccubbin, J. A. (2005). A pilot study of a web-based physical activity motivational program for adults with physical disabilities. *Disability and Rehabilitation*, 27(23), 1435–1442. http://doi.org/10.1080/09638280500242713
- Latimer, A. E., Martin Ginis, K. A., & Arbour, K. P. (2006). The efficacy of an implementation intention intervention for promoting physical activity among individuals with spinal cord injury: A randomized controlled trial. *Rehabilitation Psychology*, 51(4), 273–280. http://doi.org/10.1037/0090-5550.51.4.273
- Learmonth, Y. C., Adamson, B. C., Kinnett-Hopkins, D., Bohri, M., & Motl, R. W. (2017). Results of a feasibility randomised controlled study of the guidelines for exercise in multiple sclerosis project. *Contemporary Clinical Trials*, 54, 84–97. http://doi.org/10.1016/j.cct.2016.11.012
- Maher, C. A., Williams, M. T., Olds, T., & Lane, A. E. (2010). An internet-based physical activity intervention for adolescents with cerebral palsy : a randomized controlled trial. *Developmental Medicine & Child Neurology*, 448–455. http://doi.org/10.1111/j.1469-8749.2009.03609.x

McAuley, E., Motl, R. W., Morris, K. S., Hu, L., Doerksen, S. E., Elavsky, S., & Konopack, J. F.

(2007). Enhancing physical activity adherence and well-being in multiple sclerosis: a randomised controlled trial. *Multiple Sclerosis (Houndmills, Basingstoke, England)*, *13*(5), 652–659. http://doi.org/10.1177/1352458506072188

- Nooijen, C. F., Van Den Brand, I. L., Ter Horst, P., Wynants, M., Valent, L. J., Stam, H. J., & Van Den Berg-Emons, R. J. (2015). Feasibility of handcycle training during inpatient rehabilitation in persons with spinal cord injury. *Archives of Physical Medicine and Rehabilitation*, 96(9), 1654–1657. http://doi.org/10.1016/j.apmr.2015.05.014
- O'Brien, D., Bassett, S., & McNair, P. (2013). The effect of action and coping plans on exercise adherence in people with lower limb osteoarthritis: a feasibility study. *New Zealand Journal of Physiotherapy*, *41*(2), 49–57.
- Pilutti, L. A., Dlugonski, D., Sandroff, B. M., Klaren, R., & Motl, R. W. (2014). Randomized controlled trial of a behavioral intervention targeting symptoms and physical activity in multiple sclerosis. *Multiple Sclerosis Journal*, 20(5), 594–601. http://doi.org/10.1177/1352458513503391
- Plow, M., Bethoux, F., Mcdaniel, C., Mcglynn, M., & Marcus, B. (2014). Randomized controlled pilot study of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis. http://doi.org/10.1177/0269215513494229
- Rice, I. M., Rice, L. A., & Motl, R. W. (2015). Promoting physical activity through a manual wheelchair propulsion intervention in persons with multiple sclerosis. *Archives of Physical Medicine and Rehabilitation*, 96(10), 1850–1858. http://doi.org/10.1016/j.apmr.2015.06.011
- Rimmer, J. H., Wang, E., Pellegrini, C. A., Lullo, C., & Gerber, B. S. (2013). Telehealth weight management intervention for adults with physical disabilities: A randomized controlled trial. *American Journal of Physical Medicine & Rehabilitation*, 92(12), 1084–1094. http://doi.org/10.1097/PHM.0b013e31829e780e
- Slaman, J., Roebroeck, M., Dallmijer, A., Twisk, J., van den Berg-Emons, R. & Stam, H. (2014). Can a lifestyle intervention programme improve physical behaviour among adolescents and young adults with spastic cerebral palsy ? A randomized controlled trial. *Developmental Medicine & Child Neurology*, 57, 159–166. http://doi.org/10.1111/dmcn.12602
- Smith, D. C., Lanesskog, D., Cleeland, L., Motl, R., & Weikert, M. (2012). Motivational interviewing may improve exercise experience for people with multiple sclerosis: A small randomized trial. *Health and Social Work*, 99–109. http://doi.org/10.1093/hsw/hls011
- Suh, Y., Motl, R. W., Olsen, C., & Joshi, I. (2015). Pilot trial of a social cognitive theory-based physical activity intervention delivered by nonsupervised technology in persons with multiple sclerosis, 924–930.
- Talbot, L. A., Gaines, J. M., Huynh, T. N., & Jeffrey Metter, E. (2003). A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: A preliminary study. *Journal of the American Geriatrics Society*, 51(3), 387–392. http://doi.org/10.1046/j.1532-5415.2003.51113.x
- van Nimwegen, M., Speelman, A. D., Overeem, S., van de Warrenburg, B. P., Smulders, K., Dontje, M. L., ... Munneke, M. (2013). Promotion of physical activity and fitness in sedentary patients with Parkinson's disease: randomised controlled trial. *BMJ*, 346(f576). http://doi.org/10.1136/bmj.f576
- Wise, H. H., Jackson Thomas, K., Nietert, P. J., Brown, D. D., Sword, D. O., & Diehl, N. (2009). Home physical activity programs for the promotion of health and wellness in individuals with spinal cord injury. *Topics in Spinal Cord Injury Rehabilitation*, 14(4), 122–132.

Supplementary Table 1. Data Extraction

Available upon request (file format not able to download to submission system).

BCTs Identified	Arbour-Nicitopoulos, 2009	Bennell, 2017	Bossen, 2013	Brosseau, 2012	Froelich-Groebe, 2004	Froelich-Groebe, 2014	Hughes, 2006	Kosma, 2005	Latimer, 2006	Learmonth, 2017	Maher, 2010	McAuley, 2007	Nooijen, 2015	O'Brien, 2013	Pilutti, 2014	Plow, 2014	Rice, 2015	Rimmer, 2013	Slaman, 2014	Smith, 2012	Suh, 2015	Talbot, 2003	Van Nimwegen, 2013	Wise, 2009	Total	Studies using BCT ES	ES difference between studies that	Q
Goal setting (behaviour) (1.1)																									15	.29	- .15	1.41
Problem Solving (1.2)																									19	.40	.17	1.533
Goal Setting (outcome) (1.3)																									1			
Action planning (1.4)																									7	.35	.01	0.01
Review behaviour goal(s) (1.5)																									2			
Behavioural contract (1.8)																									2			
Commitment (1.9)																									2		<u> </u>	
Monitoring of behaviour by others without feedback (2.1)																									3	.05	- 35 *	5.31*
Feedback on behaviour (2.2)																									8	.52	.26 a	3.52 ^a
Self-monitoring of behaviour (2.3)																									12	.45	.24 *	4.34*
Self-monitoring of outcome of behaviour (2.4)																									1			
Monitoring of outcome of behaviour by others without feedback (2.5)																									1			
Social support (unspecified) (3.1)																									8	.41	.08	0.39
Social support (practical) (3.2)																									16	.34	02	0.02
Social support (emotional) (3.3)																									6	.28	- .12	0.46
Instruction on how to perform the behaviour (4.1)																									12	.34	.18	1.99
Information about health consequences (5.1)																									9	.38	.05	0.12
Salience of consequences (5.2)																									1			
Demonstration of the behaviour (6.1)																									3	.38	.04	0.81
Prompts/cues (7.1)															1										1		1	
Behavioural practice/rehearsal (8.1)																									4	.42	.08	0.29
Graded tasks (8.7)																									11	.31	- .08	0.38
Credible source (9.1)																									9	.38	.06	0.19

Supplementary Table 2. Summary of individual studies and the behaviour change techniques employed

Material reward			T																						2			
(behaviour) (10.2)																									2			
Social reward (10.4)																									1			
Self-reward (10.9)																									2			
Restructuring the physical environment (12.1)																									1			
Adding objects to the environment (12.5)																									4	.45	.11	0.58
Identification of self as role model (13.1)																									2			
Verbal persuasion about capability (15.1)																									2			
Focus on past success (15.3)																									1			
Vicarious consequences (16.3)																									2			
Total BCTs/ paper	1	4	6	1 0	8	1 6	1 1	8	1	1 0	2	6	1 1	5	8	8	8	9	5	3	7	6	9	6				

Note: ES=effect size, Q_b=measure of homogeneity, *significantly different (p<0.05), ^aApproaching significance.

First author, year	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Arbour-Nicitopoulos, 2009	•		•		•	?	•
Bennell, 2017	•	•	•	•	•	•	•
Bossen, 2013	?	•	•		•	?	•
Brosseau, 2012	•	•	•	•	•	?	•
Froelich-Grobe, 2004	?	?	•	•	•	?	•
Froelich-Grobe, 2014	•	?	•	•	•	•	•
Hughes, 2006	•		•	?	•	?	•
Kosma, 2005	?	?	•	?	•	?	•
Latimer, 2006	•	?	•	•	•	?	•
Learmonth, 2017	•	•	•	•	•	?	•
Maher, 2010	•	?	•	•	•	?	•
McAuley, 2007	?		•		•	?	-
Nooijen, 2015	•	•	•	•	•	?	-
O'Brien, 2013	•	?	•	•	•	?	•
Pilutti, 2014	•	+	•		•	?	•
Plow, 2014	•	+	•	•	•	•	•

Supplementary Table 3. Cochrane risk of bias table for randomized controlled trials

Rice, 2015	?	?	•	?	-	?	-
Rimmer, 2013	•			•	+	?	
Slaman, 2014	•	?		•		?	
Smith, 2012	?			•	•	?	
Suh, 2015	•	•		•	•	?	•
Talbot, 2003	•					?	•
van Nimwegan, 2013	•	•		•	•	?	•
Wise et al., 2009	•	?		?		?	•

Note. \bullet = low risk of bias \bullet =high risk of bias ? =unclear

PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

44

Supplementary Figure 2. PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE	-		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Abstract online
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	1-3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	N/A
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, (SF1)
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-9
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9-10
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	9-10

PHYSICAL ACTIVITY INTERVENTIONS IN DISABILITY META-ANALYSIS

			-
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	10-11
RESULTS	-		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10, Fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1, SF2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11, ST3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Table 2, 3, ST2, Fig 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11-14
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12
DISCUSSION	-	•	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	14-21
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	19-20
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	20-21
FUNDING	<u></u>		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Title Page

Page 1 of 2

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org. Page 2 of 2